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of onept latties is rapidly emerging in many areas related to Arti�ial In-telligene and Data Mining, suh as Database Management (see e.g. (23)),organization of objet hierarhies (see e.g. (22)), mahine learning (see e.g.(26)) and frequent set generation (see e.g. (19)).Equally important, the related problem of rule generation, whih orrespondsto �nding funtional dependenies in databases, is of major importane in dataanalysis, for wide-spread appliations suh as behavioral predition, arti�ialintelligene, modelization of genomi phenomena, and so forth. Reent workhas been done by Maier (25) in the theory of Relational Databases to de�nea minimal set of funtional dependenies and simultaneously by Guigues andDuquenne (20) in Formal Conept Analysis to de�ne a anonial basis of ex-at assoiation rules. Mathematial investigation has shown that onepts aswell as rules are assoiated with several mutually inlusive losure latties.These latties are potentially of exponential size, and as there may be evenmore rules than there are onepts, eÆient algorithmi tehniques are a-tively being sought to deal with these problems. An interesting breakthroughwas initiated by Bordat (8) when remarking that in order to generate theneighbors of a given onept in the lattie, no information on other oneptsis required. However, state of the art rule generation algorithms require, inorder to generate one rule, information on all previously generated rules, a setwhih it is not always feasible to handle.Our general purpose in this mathematial-oriented paper is to study variousrelationships between di�erent formal approahes, in view of using mathe-matial and/or algorithmi results whih stem from various �elds of disretemathematis. Several approahes have been proposed very reently in this di-retion. The Rough Set approah explored the relationships between funtionaldependenies and mining of prime impliants of disernability funtions. Dis-ernability funtions are based on approximation operators whih are speialases of disjuntive losure operators. SanJuan in (31) used Heyting algebrasto modelize and generalize this onept of approximation operators. In the�nite ase, Bioh and Ibaraki in (6) use generalized monotone Boolean fun-tions for the same purpose. However, all the algebrai strutures de�ned todeal with approximation operators are based on distributive latties. On theother hand, funtional dependenies indue general (i.e. not neessarily dis-juntive) losure operators and arbitrary latties, as the lass of Horn funtionsin Logial Analysis of Data and Galois Latties in Formal Conept Analysis.The Rough Sets and Formal Conept Analysis approahes are ompared in(30).In this paper, we fous on general �nite losure operators and their underlying�nite latties. Berry and Sigayret in (3) proposed a representation of a oneptlattie by a graph, where the graph-related notions of domination and max-mods were used, as well as that of minimal separation. Bordat's results (8)2



were explained and extended, the over of a onept haraterized using onlyloal information. This work established a relationship between graph theoryand onept latties, and was rewarded by immediate algorithmi results interms of onept generation analysis at least as good as that of the best suhalgorithms (5).In this paper, we show that we an extend the notion of domination to anylosure operator de�ned on a �nite universe U . This develops into new inter-esting algorithmi approahes for generating latties related to impliationalsystems or anonial overs of funtional dependenies in Relational Database.The paper is organized as follows: Setion 2 gives preliminaries on Galois andonept latties, Setion 3 explains previous work on the relationship betweengraphs and latties, Setion 4 extends the orresponding results to a generallosure system, Setion 5 interprets our results from Setion 4 in a logial-based fashion, and Setion 6 deals with the logial aspets of rule generation.2 PreliminariesWe will �rst give some preliminaries on binary relations and the assoiatedlattie. In this �eld, there are two main approahes with many notions inommon: Galois latties and onept latties. We will present both aspetsin this preliminary setion, although in the rest of the paper we will refer toonept latties.2.1 Maximal retangles, ontexts and oneptsGiven a �nite set P of "properties" or "attributes" (whih we will denote bylowerase letters) and a �nite set O of "objets" or "tuples" (whih we willdenote by numbers), we will onsider a binary relation R as a proper subset ofthe Cartesian produt P�O; we will refer to the triple (P;O; R) as a ontext.Given a subset X of P and a subset X 0 of O, the set R \ (X � X 0) is asubrelation of R, whih we will denote by R(X;X 0).De�nition 2.1 Given a ontext C = (P;O; R), a onept or losed set ofC, also alled a maximal retangle of R, is a subprodut A�B � R suh that8x 2 O � B; 9y 2 A j (y; x) 62 R, and 8x 2 P � A; 9y 2 B j (x; y) 62 R. A isalled the intent of the onept, B is alled the extent.Example 2.2 Binary relation R for our running example:3



Property set:P = fa; b; ; d; e; f; g; hgObjet set:O = f1; 2; 3; 4; 5; 6gR � P �R
R a b  d e f g h1 � � � �2 � � � � �3 � � � � �4 � �5 � � �6 � �In this relation, ah � 236 and b � 125 are maximal retangles (or onepts)of R. b is the intent of retangle b� 125, and 125 its extent.2.2 Conept lattiesA lattie is a partially ordered set in whih every pair fX; Y g of elementshas both a lowest upper bound (denoted by join(X; Y )) and a greatest lowerbound, (denoted by meet(X; Y )). We represent a lattie by the Hasse diagramof the partial ordering on the elements: transitivity and reexivity edges areomitted. The reader is referred to the lassial work of (7) for basi results onlatties. An element Y is said to over an element X if X < Y and there isno intermediate element Z suh that X < Z < Y . The set of elements whihover an element X is alled the over of X.Given a ontext C = (P;O; R), the onepts of C, ordered by inlusion onthe intents, de�ne a lattie, alled a Galois lattie or onept lattie, whih isusually represented with an ordering on the intents from bottom to top. Wewill denote this lattie by L(R). An element B�B0 is said to be a desendantof element A � A0 if A � B. B � B0 is said to over (to be a suessor of)A� A0 if A � B and there is no element C � C 0 suh that A � C � B.This lattie may be of exponential size, as it may san the power set of P or ofO. Suh a lattie, sometimes referred to as a omplete lattie, has a smallestelement, alled the bottom element, and a greatest element, alled the topelement. The elements whih over the bottom element are alled atoms.This lattie has speial properties:Property 2.3 Eah element X is the bottom element of a sublattie whihontains its desendants.Property 2.4 (5) For eah element x 2 P, the subset of elements ontaining4



x de�nes a sublattie of L(R); we will all the bottom element of this sublattiethe introduer of x.Example 2.5 The lattie L(R) of relation R in Example 2.2 is given in Fig-ure 1. In elements whih are introduers of a property, this property is rep-resented in bold. The atoms of L(R) are: ah � 236, b � 1235 and d � 145.The introduer of  is element b� 125. The sublattie de�ned by the elementsontaining  is given in Figure 2.
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Fig. 1. Conept lattie L(R) of relation R of Example 2.2. In elements whih areproperty introduers, the introdued properties are represented in bold.
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Fig. 2. Sublattie of the elements ontaining  of lattie L(R) of Figure 1.3 Relationships between domination and onepts3.1 An underlying graphOur approah to handling a onept lattie (see (3)) is to enode the relationby an underlying graph GR, onstruted on the omplement of the relation,5



de�ned, for a given ontext (P;O; R) as GR = (V;E), with V = P [ O, andwith edges de�ned as:(1) internal edges whih make P and O into liques (xy 2 E if x; y 2 P or ifx; y 2 O).(2) external edges: for x 2 P and y 2 O, xy 2 E i� (x; y) =2 R.Example 3.1 Figure 3 gives the graph whih orresponds to the relation fromExample 2.2.
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Fig. 3. Graph GR oding relation R from Example 2.2.The reason we de�ne this graph is that we have the remarkable property that avertex set S of GR is a minimal separator of GR, separating onneted ompo-nent A from onneted omponent A0 if and only if A�A0 is a onept de�nedby relation R (see (3) for details on minimal separators and this relationship).This leads to interesting results, beause muh reent work on graphs has beendone on minimal separation, with results on eÆient separator generation andon separator deomposition.Although in this paper we do not need to go into details about these graphresults, we will use some voabulary suh as `neighborhood', `domination' and`maxmods' whih stems from graph theory; we thus usually denoted by N+(x)the external neighborhood of vertex x in graph GR: for x 2 P; N+(x) = fy 2Oj(x; y) 62 Rg, and for x 2 O; N+(x) = fy 2 Pj(y; x) 62 Rg.In this paper, we will only need to use the neighborhood of the omplement,thus, instead of the graph notation N+(X), we will use notation R[X℄:De�nition 3.2 Given a ontext (P;O; R), for any subset X of P or O, wewill de�ne:� R[X℄ = fy 2 O : 8x 2 X; (x; y) 2 Rg if X � P,� R[X℄ = fy 2 P : 8x 2 X; (y; x) 2 Rg if X � O.We will denote R[R[X℄℄ by R2[X℄. R[fxg℄ will be denoted R[x℄ for short.Using this notation, we an desribe the maximal retangles as: R2[X℄�R[X℄,for X � P. 6



3.2 Domination and maxmods in a ontextA onept A� A0 is uniquely de�ned by its intent A, sine A0 = R[A℄; in therest of this setion, we will aordingly refer only to intents, i.e. to subsets ofP.One of the related graph notions whih turns out to be of primary importanefor the study of onept latties is that of vertex domination: in a graph, avertex x is said to dominate another vertex y if N+(y) � N+(x). In this paper,we will transpose this de�nition using notation R[ ℄:De�nition 3.3 Let (P;O; R) be a ontext, let x; y be in P; we say that xdominates y if R[x℄ � R[y℄Example 3.4 In our example, R[fb; g℄ = f1; 2; 5g.In (3) domination is used to de�ne a pre-order on P. With this pre-order areassoiated equivalene lasses alled maxmods (a short for the graph term'maximal lique module'), whih led to the quotient order of this pre-orderde�ning domination between maxmods:De�nition 3.5 (3) Let (P;O; R) be a ontext; we will say that X � P is amaxmod of R if 8x; y 2 X;R[x℄ = R[y℄ and X is maximal for this property.We say that a maxmod X dominates a maxmod Y 6= X if R[X℄ � R[Y ℄.Property 3.6 (3) Let X and Y be maxmods; then X � Y i� Y dominatesX. Domination between maxmods de�nes a partial order.Example 3.7 In Example 2.2, the maxmods are: fa; hg, fbg, fg, fdg, feg,ffg and fgg. fbg is a non-dominating maxmod; fg dominates fbg; fdg isnon-dominating; feg dominates fdg; fa; hg is non-dominating; fgg dominatesfa; hg and fbg; ffg dominates fa; hg, fbg and fgg.The maxmods an be omputed in O(jP [ Oj � jRj) time (see (3)).One of the ways of omputing the partition into maxmods is to use a partitionre�nement tehnique, based on a famous graph algorithm alled LexBFS (29)whih was originally designed to reognize hordal graphs: start with P andrepeatedly hoose an objet i, and use R[i℄ to split the lasses of the urrentpartition into neighbors and non-neighbors of i; if at eah step the sublass ofelements in R[i℄ is put to the left of the sublass of non-elements, then at theend, a partition into maxmods is obtained, with the interesting property thata given maxmod X an dominate only maxmods whih lay to the left of X inthe partition. This proess is desribed in detail in (5).7



Example 3.8 Figure 4 illustrates the partition re�nement based on LexBFSfrom Example 2.2.The ordered partition into maxmods obtained is (fbg, fg, fdg feg fahg fggffg). With Example 3.7 we an verify that a maxmod dominates no maxmodwhih is after it in this list.Properties an be used in a similar fashion to split the partition, this timeusing the intent of the introduer orresponding to a given property, as shownin Figure 5. abdefgh# R[1℄ = fb; ; d; egbde j afgh# R[2℄ = fa; b; ; g; hgb j de j agh j f# R[3℄ = fa; b; f; g; hgb j  j de j agh j f# R[4℄ = fd; egb j  j de j agh j f# R[5℄ = fb; ; dgb j  j d j e j agh j f# R[6℄ = fa; hgb j  j d j e j ah j g j fFig. 4. Partition re�nement based on LexBFS (see Example 3.8).The maxmods turn out to be losely related to the introduers: the partialordering on maxmods has the same struture as the suborder de�ned by theonept lattie restrited to the introduers.Property 3.9 (4) A onept with intent A � P is an introduer i� there is amaxmod X � P suh that X � A and A�X is the union of all the maxmodsdominated by X.A similar result holds for extents and objet maxmods.Example 3.10 Figure 6 gives the domination ordering on maxmods orre-sponding to the relation of Example 2.2. Conept abgh � 23 is the introduerof g. fgg is a maxmod and dominates fa; hg and fbg. Conept abfgh � 3 isthe introduer of f . ffg is a maxmod and dominates fgg, fa; hg, and fbg.8



abdefgh# a : fa; hgah j bdefgh# b : fbgah j b j defg#  : fb; gah j b j  j defg# d : fdgah j b j  j d j efg# e : fd; egah j b j  j d j e j fg# f : fa; b; f; g; hgah j b j  j d j e j fg# g : fa; b; g; hgah j b j  j d j e j g j f# h : fa; hgah j b j  j d j e j g j fFig. 5. Partition re�nement based on the intents of the introduers (see Exam-ple 3.8).
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Fig. 6. The domination ordering on maxmods for Relation R from Example 2.2.This ordering has interesting appliations: when the number of elements of thelattie is exponential, several authors ((18), (13), (22)) have found it usefulto further simplify this lattie into a Galois subhierarhy, by using the sub-order indued by the introduers (using introduers for both properties andobjets), whih has a polynomial number of elements; its properties have beeninvestigated in several appliations suh as UML representations and handlingobjet-oriented hierarhies. In (4), Berry and Sigayret show how to eÆiently9



maintain suh a subhierarhy by deomposing it into two partially orderedsets of introduers: one for introduers of properties and one for introduersof objets.Bordat in (8) used the fat that, for any onept A � A0, the sublattie ofwhih A� A0 is the bottom element is isomorphi to the onept lattie of asubrelation of R:Theorem 3.11 Let (P;O; R) be a ontext, let A � A0 be a onept. The el-ements whih ontain A in their intent de�ne a sublattie of L(R) whih isisomorphi to the lattie of relation R(P�A;A0). We will refer to R(P�A;A0)as Bordat's subrelation related to A.We use the notion of maxmod and the results from (8) to present the followingtheorem, whih uses the Bordat's subrelation to de�ne the over of an arbitraryelement of the lattie.Theorem 3.12 (3) Conept B � B0 overs a onept A � A0 i� B � A is anon-dominating maxmod in R((P � A); R[A℄).This is algorithmially interesting, beause it enables a loal approah. How-ever, when generating all the onepts, the idea that domination is inheritedas one moves up in the lattie avoids a omplete re-omputation of the domi-nation order, thus yielding an interesting time and spae omplexity (5):Property 3.13 Let A and B be onepts, with A � B, let x and y be proper-ties whih are not in B. Then if x dominates y in Bordat's subrelation relatedto element A, x also dominates y in Bordat's subrelation related to elementB.4 General losure systemsIn the previous setion, we have disussed various aspets of a onept lat-tie. However, in several appliations, other latties are used, for example fordealing with funtional dependenies in databases; another suh appliationis rule generation, whih, as we will see in Setion 6, is assoiated with twodi�erent superlatties of the onept lattie.Thus, a more general de�nition of latties built on a family of subsets of proper-ties, attributes, or, more generally, on a family of subsets of any �nite universeU is needed. This orresponds to losure systems, whih we will disuss in thissetion. We will see that the notion of domination between maxmods an beusefully extended to this more general ase.10



4.1 Preliminary notions on losure systemsDe�nition 4.1 A unary operator ' on a universe U is alled a losure oper-ator on U if for A;B � U :(1) A � '(A) (extensivity)(2) '('(A)) = '(A) (idempotene)(3) if A � B, then '(A) � '(B) (isotony)A subset A of U is said to be losed if '(A) = A.Property 4.2 Let (P;O; R) be a ontext. R2 is a losure operator on P.De�nition 4.3 Given a family E of subsets of a �nite set U , the losure byintersetion E� of E is de�ned indutively as follows:(1) U and every element of E are in E�.(2) If X and Y are in E�, then X \ Y is in E�.Example 4.4 Let U = fa; b; ; d; e; fg, let E = ffa; ; d; e; fg; fb; d; e; fg;fa; ; dg; fa; ; egg. Then E� = E [ fU; fd; e; fg; fdg; feg; fa; g; ;g.De�nition 4.5 A family F of subsets of a �nite set U is said to be a losuresystem or a Moore family if: 8 E � F , (TX2E X) 2 F .Eah losure operator ' on U an be assoiated with the family F' = f'(A) :A � Ug, whih is a losure system suh that for any A � U , '(A) is thesmallest element of F' whih inludes A. Conversely, eah losure systemF � 2U (where 2U is the power set of U) an be assoiated with a losureoperator ' de�ned for any X 2 U by '(X) = T Y 2F ; Y�X YProperty 4.6 If F is a losure system, then (F ;�) is a lattie with top ele-ment U .Example 4.7 The lattie assoiated with the losure system given in Example4.4 is given in Figure 7.From this lattie stem the notions of over and atom:De�nition 4.8 Given a losure operator ' on U , and the orresponding lo-sure system F'.A losed set B is said to over a losed set A in F' if A � B and there is nolosed set C suh that A � C � B.B is said to be an atom of F' if it overs the losed set '(;).Thus, B overs A if for any X � U , (A � X � B)) '(X) = B.11
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Fig. 7. Lattie assoiated with the losure system de�ned in Example 4.4.The following property links the notion of overs and atoms and will be usedto generalize Theorem 3.12 and reursive approahes to generating latties oflosed sets.Property 4.9 Let ' be a losure operator on a �nite set U . For every losedset A 2 F', the map 'A : X�U 7! '(X [A) is a losure operator on U suhthat for every losed set B 2 F', B overs A i� B is an atom of F'A.PROOF. 'A is learly a losure operator on U : for every X�U ,(1) X�'A(X), sine X�X [ A�'(X [ A) = 'A(X),(2) if X � Y then 'A(X)�'A(Y ), sine 'A(X) = '(X [ A)�'(Y [ A) ='A(Y ),(3) 'A('A(X)) = 'A, sine:'A('A(X))='('(X [ A) [ A)='('(X [ A)) sine A�'(X [ A)='A(X)Let us now show that B overs A i� B is an atom of F'A.If B overs A in F', then A � B. Moreover, for any X � B;X 6= ;, we have'A(X) = '(X [ A) = B, sine A � X [ A�B. Thus, B overs 'A(;) andonsequently is an atom of F'A.Conversely, if B is an atom of F'A then B overs 'A(;) = '(A).12



4.2 Extending domination to a losure systemWe will now explain how we an extend the results from Setion 3 from R2 toan arbitrary losure operator.We have seen in Setion 3.2 that by virtue of Theorem 3.12, it is possibleto ompute the over of any element of the lattie by simply restriting therelation and by omputing the orresponding minimal elements of the orderde�ned by the maxmods. This is based on Bordat's subrelation, but sine inthis more general ontext no relation is given to work with, we will need tode�ne domination as related to a given losed set A.De�nition 4.10 Given a losure operator ' and a losed set A, we will de�nea binary relation on U � A, whih we will denote by dom'(A), by setting forany x; y 2 U � A:(x; y) 2 dom'(A)() y 2 '(A [ fxg)We will say that x dominates y in A.This extension of the notion of domination as studied in Setion 3 preservesmany of the original results: for any losed set A, dom'(A) is a pre-order (i.e.dom'(A) is reexive and transitive). As a result, U � A an be partitionedinto equivalene lasses whih we will all maxmods; this results in a quotientorder, whih is a partial order on the maxmods.Clearly, a subset M � U � A is a maxmod of dom'(A) if and only if it is amaximal set suh that for any x 2 M , M � '(A [ fxg).The notion of domination is naturally extended to maxmods:De�nition 4.11 We denote by Dom'(A) the binary relation de�ned on themaxmods of dom'(A): for X; Y � U � A(X; Y ) 2 Dom'(A)() (9x 2 X)(9y 2 Y ) (x; y) 2 dom'(A)We will say that maxmod X dominates maxmod Y .Let us remark that the existential quanti�ers in previous de�nition an bereplaed by universal quanti�ers:(X; Y ) 2 Dom'(A)() (8x 2 X)(8y 2 Y ) (x; y) 2 dom'(A)13



In the rest of this paper the relation dom'('(;)) (Dom'('(;)) resp.) will bedenoted in short by dom' (Dom' resp.).The notion of introduer also extends to losure systems:De�nition 4.12 For x 2 U , '(fxg) is alled the introduer of x.It is easy to see that this de�nition, when applied to R2, is the same as the onegiven in Setion 3. In fat, for the latties de�ned by losure systems, for eahelement x 2 U , the subset of elements ontaining x de�nes a sublattie, thebottom element of whih is alled the introduer of x. This an be extendedto de�ning the introduer of a maxmod:Property 4.13 Eah maxmod X of dom' de�nes an introduer '(X) whihis :'(X) = S fY : (X; Y ) 2 Dom'g.PROOF. If M�U is a maxmod of dom', then for any x 2M , M�'(fxg).Sine ' is an isotone operator, '(fxg) � '(M) � '(fxg); thus '(M) is theintroduer of x.Moreover, for any y 2 U suh that (x; y) 2 dom', '(fyg)�'(fxg) = '(M).This shows that: SfY : (M;Y ) 2 Dom'g � '(M). The onverse inlusionfollows by minimality of M .Example 4.14 Let us onsider the losure system from Example 4.4; letus ompute the domination relation with respet to the bottom element ; ofthe assoiated lattie shown in Figure 7. '(a) = fa; g; '(b) = fb; d; e; fg;'() = fa; g; '(d) = fdg; '(e) = feg; '(f) = fd; e; fg. By de�nition,(x; y) 2 dom'(A) i� y 2 '(A [ fxg), here with A = ;. The elements of dom'are: (a; a), (b; b), (; ), (d; d), (e; e), (f; f), (a; ), (b; d), (b; e), (b; f), (; a),(f; d), (f; e). So a dominates  and  dominates a; b dominates f , and f dom-inates d and e. Maxmods: fa; g; fbg; fdg; feg; ffg. Non-dominating maxmods(whih are thus atoms): fa; g; fdg and feg. Other maxmods (whih also de-�ne introduers): ffg whih de�nes introduer fd; e; fg, and fbg, whih de�nesintroduer fb; d; e; fg.In a fashion quite similar to that desribed in Setion 3, the partition intomaxmods an be omputed by using partition re�nement, as illustrated in thefollowing example.Example 4.15 Using the losure system from Example 4.4, Figure 8 givesthe details of the omputation of the partition into maxmods related to losedset ;. 14



The result is: fa; ; dg is non-dominating, fdg and feg are non-dominating,ffg dominates fdg and feg,fbg dominates ffg, fdg and feg.To ompute the partition related to a losed set A, one would replae '(x) by'(fxg [ A) and use eah of the elements of U whih is not in A.abdef# '(a) = fa; ga j bdef# '(b) = fb; d; e; fga j bdef# '() = fa; ga j bdef# '(d) = fdga j d j bef# '(e) = fd; e; fga j d j e j bf# '(f) = fd; e; fga j d j e j f j bFig. 8. Partition re�nement into maxmods from Example 4.4 (see Example 4.15).Using De�nition 4.11, we an now reformulate Theorem 3.12 into a generalstatement:Theorem 4.16 Given a losure operator ' on a �nite set U , and two losedsets A;B, then B overs A i� A�B and B�A is a non-dominating maxmodof dom'(A) (or, equivalently, a minimal element of Dom'(A)).PROOF. From Property 4.9, follows that a losed set B overs a losed setA if A is a proper subset of B and B is an atom of the losure system: F'A. ByProperty 4.13, B is a non-dominating maxmod of dom'A. For any x; y 2 U�A,we have the following equivalent statements:(x; y) 2 dom'A() y 2 'A(fxg)() y 2 '(A [ fxg)() (x; y) 2 dom'(A)Thus, B � A is a maxmod of dom'(A).The onverse proof is similar. 15



The inheritane mehanisms also extend readily:Property 4.17 Let A and B be losed sets, with A � B, let x and y beelements of U whih are not in B. Then if x dominates y in A (i.e. (x; y) 2dom'(A)) , then x also dominates y in B (i.e. (x; y) 2 dom'(B)).PROOF. By de�nition of dom'(X), the following equivalenes hold for any(x; y) 62 B:(x; y) 2 dom'(A)() y 2 '(A [ fxg)(x; y) 2 dom'(B)() y 2 '(B [ fxg)Moreover, A [ fxg�B [ fxg implies '(A [ fxg)�'(B [ fxg).Consequently, dom'(A) \ (U � B)2�dom'(B).Thus, even in this more general ontext, we are able, given a losure operator,to ompute the over of an element, with the same algorithmi advantages:possibility of a heap loal investigation of the lattie, eÆient reursive gen-eration of all losed sets, quik generation of all the introduers.5 Logial representation of generalized dominationHorn funtions are used in relational databases theory (14) and logi program-ming (24). In order to eÆiently ompute generalized domination, we will nowsimilarly onsider Horn funtions assoiated with losure operators.5.1 Preliminary notionsThis setion deals with Boolean funtions that map 2U into f0; 1g. Given suha Boolean funtion f , we all model (ounter model resp.) any subset X�Usuh that f(X) = 1 (f(X) = 0 resp.). We identify every x 2 U with theBoolean funtion suh that x(X) = 1 i� x 2 X. f is said to be a literal iff = x or f = :x for some x 2 X. Literals of the form x are said to be positive,and negative otherwise.We now introdue the neessary notations and basi onepts on Horn fun-tions whih we will need throughout the rest of this paper. We refer the readerto (21; 12; 9) for general statements and proofs of main results in this theory.16



A propositional lause is a �nite disjuntion of literals that do not ontainboth a funtion x and its negation :x. A (proper) sub-disjuntion of a lauseis alled a (proper) sublause. A lause is said to be a Horn lause if it has atmost one positive literal. The empty lause is the onstant Boolean funtion0. The set of negative literals of a lause is alled the support of this lause.A non-empty lause Wa2A :a with no positive literal is said to be negative,and is usually denoted by A!, or sometimes by A! U . A non-empty Hornlause Wa2A :a _ b with exatly one positive literal b is said to be pure andwill be denoted by A! b. Moreover, we will sometimes write the onjuntionVfA! b : b 2 B; b 62 Ag of a set of pure Horn lauses having the same supportA, simply as A! B.A set H of Horn lauses is said to be:� unsatis�able if VH = 0.� a Horn representation of f if VH = f ; f is then said to be a Horn funtion.� irredundant if for any proper subset H0 of H, VH0 6= VH.� equivalent to another set H0 of lauses if VH0 = VH.Finally, a lause g is an impliate of a Boolean funtion of f if f � g. Itis prime if no proper sublause is an impliate. We denote by Pf the set ofprime impliates of a given Boolean funtion f . It is well known that f isa Horn funtion if and only if Pf is a Horn representation of f . Any Hornrepresentation H of f suh that H�Pf is said to be a prime representationof f .5.2 Horn funtions assoiated with losure operatorsWe will now how we an assoiate a Boolean funtion with a losure operator'.De�nition 5.1 Let ' be a losure operator on U ; we denote by f' the Booleanfuntion that maps 2U onto f0; 1g de�ned by:f'(X) = 1()'(X) = X and X 6= UDe�nition 5.2 Let H be a set of lauses. We will denote by ABS(H) theminimal equivalent set of lauses obtained from H by dropping lauses byabsorption (i.e. by dropping all lauses that have a sublause in H).To larify the relationship between losure systems and prime impliates of aHorn funtion, we need to assoiate a set of propositional Horn lauses withthe subsets of U . 17



De�nition 5.3 Let ' be a losure operator on U ; let A be a subset of U .Then A an be assoiated with the following set of propositional Horn lausesH'(A):
H'(A)=8>>>>><>>>>>: fA!g if '(A) = UfA! b : b 2 '(A)� Ag if A � '(A) 6= U; otherwiseFor every X �2U , then H'(X ) is de�ned as the set of lauses:H'(X )=ABS [A2X H'(A)!We apply this to de�ne a Horn representation of f' and show the onnetionwith Boolean funtions usually assoiated with Funtional Dependenies intheory of Relational Databases (14).Lemma 5.4 For every losure operator ' on U , H'(2U) is a Horn represen-tation of f'.PROOF. The lemma follows from the following equivalent statements:(1) X is a ounter-model of f'.(2) X is a subset of U suh that X 6= '(X) or X = U .(3) X is a ounter-model of VH'(2U)The last two statements are equivalent beause H'(2U) ontains either a sub-lause of X! if '(X) = U , or a sublause of X! x for some x 2 '(X)�X.It is worth mentioning that this Horn representation of f' is not pure, as itontains negative lauses. Any Horn funtion on n variables an be enodedinto a unique positive Horn funtion on n + 1 variables. We will not onsidersuh translations in this paper, sine the positive omponent of Pf' plays animportant role in rule generation, as we will see in Subsetion 6.3.Theorem 5.6 below haraterizes the prime impliates of f'. It ould be de-dued from well-known results in relational databases (14) or Boolean analysis(16), But for the sake of self-ontainment, we will give a diret proof.De�nition 5.5 Let ' be a losure operator on U , we denote by J' the familyof subsets X of U suh that: 18



(1) X 6= '(X),(2) for any proper subset Y of X, '(Y ) 6= '(X).In the terminology of Relational Databases, an element J of J' suh that'(J) = F 2 F' (i.e. '(J) is an element of losure system F') is alled agenerator of F . If F = U then J is said to be a key.Note that, by Item 1 of De�nition 5.5, J' \F' = ; and that, by Item 2, eahX in J' is a minimal element of fY � U : '(Y ) = '(X)g. Thus a subsetA�U is losed if and only if for any negative lause X! we have X 6�A, andfor any lause X! � 2 H'(J') suh that X�A, we have � 2 A.Theorem 5.6 Let ' be a losure operator on U , then H'(J'[fU!g) is theset of prime impliates of f'.PROOF. First, we show that any lause of H'(J') is a prime impliate off'. By Lemma 5.4, sine H'(J')�H'(2U), H'(J') is a set of impliates off'. Let g 2 H'(J'). We onsider two ases:(1) Suppose g = J! is a negative lause of H'(J'). If J was not prime, wewould have J 0 � J suh that f' � J 0!< J!.Sine J 2 J' and J 0 � J we have '(J 0) 6= U . Then '(J 0) is a model off' and a ounter-model of J 0!. This ontradits the hypothesis that J 0is an impliate of f'. Thus no sublause of J ! is an impliate of f',whih shows that J! is prime.(2) Suppose g = J! j is a pure Horn lause of H'(J'). By absorption, wehave:j 2'(J)� [S�J;S2J' '(S)Let us suppose that there exists a proper sublause h of J ! j thatis an impliate. Therefore there exists J 0 � J suh that h = J 0 ! j.Consequently, there exists K 2 J' with: K�J 0 � J suh that j 2 '(K),whih ontradits (1).Conversely, let h be a prime impliate of f'. Sine f' is a Horn funtion, h isa Horn lause. We again examine two ases:(1) If h is negative, h = A ! for some proper subset A of U . Then forany subset X � U suh that A � X, f(X) = 0. Then '(A) = U andonsequently A is a key in J'.(2) If h is pure, then h = A! a for some proper subset A of U and somea 2 U � A. Sine A! a is a prime impliate of f , f(A) = 0 and for anysubset X of U suh that A � X, f(X) = 1 implies a 2 X. thus a 2 '(A)and A is a generator of '(A), as if A was not a generator, there would19



exist a proper subset A0 of A suh that f � A0! a, whih ontraditsthe assumption that A! a is prime.Example 5.7 We will use the following relation, from (20)
P = fa; b; ; d; egO = f1; 2; 3; 4g R a b  d e1 � �2 � �3 � � �4 � �The assoiated Conept Lattie is shown in Figure 9.Let us use the onepts to de�ne a losure system on U = fa; b; ; d; eg:F'= f;; fag; fbg; fg; fdg; fa; bg; fa; g; fb; ; dg; fd; eg; UgJ'= ffeg; fa; dg; fa; eg; fb; g; fb; dg; fb; eg; f; dg; f; eg; fa; b; ggH'(J')= ffa; dg!; fa; eg!; f; eg!; fb; eg!; fa; b; g!;feg! d; fb; g! d; fb; dg! ; f; dg! bgf'=(:a _ :d) ^ (:a _ :e) ^ (: _ :e) ^ (:b _ :e)^(:a _ :b _ :) ^ (:e _ d) ^ (:b _ : _ d) ^ (:b _  _ :d)^(b _ : _ :d)
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Fig. 9. Conept lattie of the relation from Example 5.7.5.3 Horn representation of domination for losed setsWe will now translate the domination relations into logial form.20



De�nition 5.8 Let ' be a losure operator on U , X �2U , A�U , and (x; y)�(U � A)2. We will de�ne K'(X ; A; x; y) as the set of lauses:H'(X )[f! a : a 2 Ag[f! x; y!gTheorem 5.9 Let ' be a losure operator on U , H a Horn representationof f', A a losed set, and (x; y) 2 (U � A)2. Then (x; y) 2 dom'(A) i�K'(H; A; x; y) is unsatis�able.PROOF. From Lemma 5.4, we an dedue that H = H'(2U), and by de�ni-tion, (x; y) 2 dom'(A) i� y 2 '(A [ fxg).Clearly, we again have to onsider two ases:(1) '(A [ fxg) = U . In this ase, (x; y) 2 dom'(A) for every y 2 U � Aby de�nition of dom'(A). Moreover, there exists a least one sublause of(A [ fxg)! in H, thus H [ f! a : a 2 Ag�K'(H; A; x; y) is obviouslyunsatis�able for every y 2 U � A.(2) '(A [ fxg) 6= U . In this ase, if (x; y) 2 dom'(A), then a sublauseA [ fxg ! y is in H and K'(H; A; x; y) is unsatis�able. Conversely,if K'(H; A; x; y) is unsatis�able, then for any model M of f suh thatA [ fxg�M , we have y 2M and therefore, y 2 '(A [ fxg).
As the Horn SAT problem an be solved in linear time (see, for example, (15)or (27)), we an dedue from Theorem 5.9 that dom'(A) an be omputedin O(jHj:jU � Aj2) time, for any losed set A. Moreover, we an supposethat H is an irredundant subset of H'(J'), sine an irredundant and primerepresentation of VH an be omputed in O(jHj2) time (21).Example 5.10 Let F' be the losure system de�ned in Example 5.7.H'(J') [ f! dg = f fa; dg !, fa; eg !, f; eg !, fb; eg !, fa; b; g !,fb; dg! , f; dg! b,! d g.and thus:� dom'(fdg) = f(b; ); (; b); (a; b); (a; ); (a; e)g� Dom'(fdg) = f(fag; fb; g); (fag; feg)g� Cover of fdg: ffb; ; dg; fd; egg 21



6 Closure systems assoiated with rule generationOne of the most ruial problems in Data Mining using Formal Conept Anal-ysis is rule extration. In Example 5.7, e will imply d, beause there is no on-ept where e appears without d. Finding these rules, alled exat assoiationrules, is of major importane in pratise, and learly there are a great numberof them.Work by Guigues and Duquenne (20) and by Ganter (17) show that the setof suh rules an be represented by a basis of rules, from whih all other rulesan be easily inferred, a proess whih an drastially redue the number ofrules whih need to be omputed and memorized. Computing this basis isequivalent to omputing the anonial over of funtional dependenies in arelational database (25).In relation to the work in this paper, existing rule generation algorithms inFormal Conept Analysis are based on the de�nition of two losure systems,orresponding to pseudo-losed sets and quasi-losed sets assoiated with theinitial losure system orresponding to onepts.In this setion, we will apply our results to these two other losure systems,and in partiular we will aordingly transpose Theorem 5.9.6.1 Dependeny relations and basisAny losure system is assoiated with a dependeny relation orresponding tothe set of assoiation rules (28). Generators and basis an thus be used in theontext of losure systems.De�nition 6.1 A binary relation D on 2U is said to be a dependeny relationif the following properties hold for all Y1; Y2; Y3�U :D1) D is transitive,D2) if Y2 � Y1 then (Y1; Y2) 2 D,D3) if (Y1; Y2) 2 D then (Y1 [ Y3; Y2 [ Y3) 2 D.Note that onditions D1) and D3) imply that if (Y1; Y2) 2 D and (Y3; Y4) 2 D,then (Y1 [ Y3; Y2 [ Y4) 2 D. Consequently, the binary relation �D de�ned on2U by (X; Y ) 2 �D i� (X; Y ) 2 D and (Y;X) 2 D is a ongruene on thesemi-lattie (2U ;[). The struture (U;�D) is alled a dependene spae in(28).De�nition 6.2 If R is a relation on 2U , we will denote by R+ the minimal22



relation on 2U inluding R whih is a dependeny relation.Let D be a dependeny relation on 2U . A subrelation R �D is said to be agenerator of D i� R+ = D.If there is some proper subrelation S of R suh that S+ = D, then R is saidto be redundant.De�nition 6.3 Let ' be a losure operator U . We de�ne a binary relation!' on (2U)2 by the following equivalent onditions for X; Y �U :X!' Y () (8Z�U) (X�'(Z)) Y �'(Z))()'(Y )�'(X)()Y �'(X)where (X; Y ) 2!' is denoted by the in�x notation X!' Y .A pair of subsets X; Y suh that X !' Y is alled an exat assoiationrule in Data Mining or a (funtional) dependeny in the theory of relationaldatabases.From (28) hold the following results.Property 6.4 An operator ' on U is a losure i�!' is a dependeny relationon 2U .From a formal point of view, X!' Y denotes a pair of sets, while X! Ydenotes a set of propositional lauses. However, we will see that one holds ifand only if the other holds.We an now de�ne generators and basis for an assoiation relation:De�nition 6.5 Let ' be a losure operator on U , let X � 2U be a family ofnon-losed sets. We will denote by R'(X ) the relation f(X;'(X)) : X 2 Xg�(2U)2.We will say that X is a generator of !' if R'(X )+ =!'. If in additionR'(X ) is minimal, then X is alled a basis of!'.As it has been pointed out in (20), J' is a generator of!'.De�nition 6.6 Let ' be a losure operator on U . Then a subset X 2 2U�F'is said to be quasi-losed i� for any Y 2 F', X \ Y 2 F' [ fXg. We willdenote by Q' the family of quasi-losed sets.Beause of De�nition 4.5, for any quasi-losed set X, F' [ fXg is a losuresystem. This leads to the following theorem, proved in (20; 10).Theorem 6.7 Let ' be a losure operator on U , then:23



(1) Q' is a generator of !'.(2) F' [Q' is a losure system.(20) showed that all the basis of !' have the same ardinality, and theyde�ne a unique (anonial) basis by using the losure system whih we willnow desribe.De�nition 6.8 Let ' be a losure operator on U . The family B' of pseudo-losed sets of ' is de�ned by:B 2 B' i� '(B) 6= B and (8A 2 B') A � B ) '(A)�BTheorem 6.9 (20) Let ' be a losure operator on a �nite set U , then:(1) B' is a basis of!'.(2) B'�Q'.(3) F' [ B' is a losure system.We refer the reader to the original paper (20) or to (11) for the proof ofTheorems 6.7 and 6.9.Example 6.10 Figure 10 gives the lattie of F'[B' orresponding to Exam-ple 5.7.
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eFig. 10. Lattie of onepts and pseudo-losed sets of the relation from Example5.7.In the rest of this work, we will all family B' the anonial basis of!';we will denote by �' the losure operator assoiated with the losure systemF' [Q', and by �' the losure operator assoiated with F' [ B'.As we have generalized domination to any losure system, there will be adomination for losure system F�' = B' [ F' and a domination for losure24



system F�' = Q'[F'. Charaterization 4.16 an thus be applied to generatingthe losed sets of �' and �'.6.2 Canonial basis and minimal support Horn representationWe will now give a logial representation of the anonial basis, and orre-spondingly express the domination relations assoiated with F�' and F�'.This logial representation is based on the following theorem well-known inRelational Databases (14, Ch.11, x2.2). We restate it here using the notationsintrodued in the previous subsetion.Theorem 6.11 Let R be a binary relation on 2U , X a subset of U and x anelement of U . Then, (X; fxg) 2 R+ i� we have:^fV !W : (V;W ) 2 Rg ^ :(X! x)= 0From this theorem, the two following orollaries follows diretly. The �rst onetranslates in terms of Horn funtions the notion of generator of a dependenyrelation, the seond one translates the notion of non redundany of a set offuntional dependenies.Corollary 6.12 Let ' be a losure operator; X is a generator of!' i� H'(X )is equivalent to H'(2U).PROOF. X is a generator of!' i�R'(X )+ =!'. FromTheorem 6.11 followsthat, for any A�U and a 2 U � A,(A; fag) 2 R'(X )+()^H'(X ) ^ :(A! a) = 0Consequently, R'(X )+ =!' i� VH'(2U) and VH'(X ) have the same impli-ates i� H'(X ) is equivalent to H'.This orollary shows the well-known onnetion between the losure of a setof funtional dependenies using rules D1), D2) and D3) and the forwardhaining losure de�ned by a set of lauses. However, there is a slight di�erenebetween the notion of a non-redundant set of funtional dependenies and anon redundant set of lauses. The following de�nition and orollary give theexat onnetions between these onepts, as it is done in (9).25



De�nition 6.13 Given a set H = fAp! ap : p 2 Pg [ fBn!: n 2 Ng ofHorn Clauses, we denote by Su(H) the set of its supports: fAp : p 2 Pg[fBn :n 2 Ng.We shall say that H is support -non-redundant if fBn : n 2 Ng is irredundantand for any p 2 P ,^(H� fAi! ai : Ai = Ap; i 2 Pg) 6=^HOtherwise H is said to be support-redundant.Finally, H is said to be a minimal-support Horn representation of a funtionf if H is a Horn representation of f suh that the number jSu(H)j of supportsin H is minimal.Corollary 6.14 Let ' be a losure operator on U , and X �J', then:(1) R'(X ) is non-redundant i� H'(X ) is support-non-redundant.(2) X is the anonial basis of ' i� H'(X ) is a minimal-support Horn rep-resentation of f' with supports of maximal ardinality.PROOF. We �rst prove Item 1. Let us suppose that there exists J 2 J'suh that R'(X � fJg)+ =!'. By Corollary 6.12, H'(X � fJg) is equiva-lent to H'(2U). Sine J is a generator, the set XJ of lauses in H'(X ) suhthat Su(XJ) = fJg is non-empty. Consequently, H'(X ) � XJ � H'(X ) andV(H'(X )�XJ) = VH'(X ). The onverse an be proved in a similar fashion.Item 1 together with Corollary 6.12 imply that X is a basis if and only ifH(X )is a minimal support Horn representation of f'. Given suh a representation,it follows from Theorem 6.9 that VH(X ) = VH(B') and jSu(H(X ))j =jB'j = jSu(H(B'))j. Moreover, the losure operator �' maps eah supportS 2 Su(H(X )) into the smallest B 2 B' suh that S � B. This de�nes aone-to-one orrespondene that maps any element of jSu(H(X ))j into a largerelement in Su(H(B')).The following orollary derives (25), where algorithms to ompute anonialovers of funtional dependenies in a relational database are presented. Aomplete and diret proof an now be found in (9).Corollary 6.15 Let ' be a losure operator on a �nite set U . Given thegenerator J', the problem of �nding a basis of ' is polynomially solvable.We will now translate dominations for losure �' into logial form, as we didin Theorem 5.9 for losure '. 26



Let ' be a losure operator on U , A a losed set, (x; y) 2 (U�A)2 and [B'℄A;xthe following subset of B':[B'℄A;x= fX 2 B' : jXj < j�'(A [ fxg)jgBy De�nition 6.8 and by Theorem 6.11,(x; y) 2 dom�'(A)() K'([B'℄A;x ; A; x; y)is unsatis�able.6.3 Horn representations of domination and quasi-losed setsAnother approah to �nding the anonial basis is to generate the quasi-losedsets by the method presented in (20). In the ontext of propositional Hornlauses, the relationship between the representation of f' based on quasi-losedsets and the one based on pseudo-losed sets is quite simple sine H'(B') =H'(Q').Domination for �' an be omputed for any A 2 F' using any generatorG � J' of!', as we will see in Theorem 6.20. To state this theorem weneed to onsider �nite ideals of losure systems and pure omponents of Hornrepresentations.De�nition 6.16 For any losed set A, we will denote by 'jA the losurede�ned on A by ('jA)(X) = '(X) for any X �A. Let H be a prime repre-sentation of f', we will denote by HjA the set of lauses:HjA = fg 2 H : Sufgg�Ag [ fA!gwhere Sufgg is the support of g.Property 6.17 Let ' be a losure operator and H a prime representation off', then for every losed set A, HjA is a Horn representation of f'jA.PROOF. Clearly, VHjA = f' ^ Vfx!: x 62 Ag ^ A!= f'jAGiven a set of lauses H, we denote by HP the subset of pure Horn lauses.We shall all this subset the pure omponent of H. The following property hasbeen shown in (21). 27



Property 6.18 The pure omponents of prime Horn representations of agiven Boolean funtion are equivalent.We an now state the Horn representation of domination for quasi-losed setsbased on the following lemma from (20).Lemma 6.19 ((20)) X 2 Q' i� for any Y � X, '(Y ) 6= '(X) ) '(Y ) �X.Theorem 6.20 Let ' be a losure operator on U , A a losed set, (x; y) 2(U � A)2, H a prime representation of f' and P a prime representation ofV(Hj'(A [ fxg)) = f'j'(A[fxg).Then (x; y) 2 dom�'(A) i� K' �PP ; A; x; y� is unsatis�able.PROOF. Let X be a subset of U and J'(A; x) = fJ 2 J' : '(J) � '(A [fxg)g). From Lemma 6.19 and Theorem 6.11, for any subset Z � U , thesmallest quasi-losed set Q'(Z) ontaining Z is the smallest solution of theequation:^H'(J'(A; x)) ^^f! z : z 2 Zg=1However, H(J'(A; x)) is a prime Horn representation of the pure omponentof f'j'(A[fxg). By Property 6.18 we have:^H'(J'(A; x))=^PPConsequently, y 2 �'(A [ fxg) i� Vf! z : z 2 A [ fxgg ^ y!= 0, whihproves the theorem.As realled in Setion 5.3, a prime over of H an be omputed in O(jHj2), sodom�'(A) an be omputed in O(jHj2:jU � Aj) if jU � Aj � jHj.However, using the fat that, given a losure operator ', any generator G�J'of!' indues a prime representation of f', it is also possible to omputedom�'(A) in O(jGj:jU�Aj2) time if the relation R'(G) is known. We illustratethis in the following example.Example 6.21 Consider again the losure system de�ned in Example 5.7.J'(fd; eg; a)= ffeg; fb; g; fb; dg; f; dgg=J'(fd; eg; b) = J'(fd; eg; )28



where J'(A; a) has been de�ned for any losed set and any a 2 U in the proofof Theorem 6.20. For x 2 fa; b; g:H'(J'(fd; eg; x) [ f! d;! eg) = fbd! ; d! b;! d;! eg)and dom�'(fd; eg) = f(b; ); (; b)g. Therefore, the elements of Q' that overfd; eg are fa; d; eg and fb; ; d; eg. Among them, only the last one is in B'.7 Conlusion and open questionsIn this paper, we use the relationship between onept latties and dominationin graphs to extend existing graph-oriented results on onept latties to ageneral losure system and to Horn lauses.Though there obviously remains muh work to be done in this diretion, ourresults are interesting not only from a possible algorithmi point of view, butalso beause they an lead to a better understanding of the anonial basis ofrules; moreover, it is important to �nd new ways of modeling these results sothat a variety of non-speialists an ahieve a better grasp on these problems.Our results are algorithmially promising beause the notion of domination al-lows a loal approah to generating losed sets: �rst, one an easily examine asubproblem related to a partiular area of the underlying lattie, without gen-erating the entire lattie struture starting from the bottom element. Seond,this an allow a very eÆient reursive generation tehnique of the lattie, aswe have shown is the ase for onept latties (5). The same tehnique appliesto generating other latties of losed sets; rule generation for example shouldbe an interesting appliation of this.Another question of great urrent interest is that of generating approximate as-soiation rules. As an example, an interesting reent approah by J-M. Bernardand S. Poitrenaud (2) works by �rst approximating the binary relation aord-ing to oherent probabilisti models whih must be ompatible with logialrules; the logial interpretation we introdue in this paper ould be ombinedwith this approah in future work.Referenes[1℄ Barbut M., Monjardet B.: Ordre et lassi�ation. Classiques Ha-hette, (1970). 29
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